Title: | IRT Item-Person Map with 'ConQuest' Integration |
---|---|
Description: | A powerful yet simple graphical tool available in the field of psychometrics is the Wright Map (also known as item maps or item-person maps), which presents the location of both respondents and items on the same scale. Wright Maps are commonly used to present the results of dichotomous or polytomous item response models. The 'WrightMap' package provides functions to create these plots from item parameters and person estimates stored as R objects. Although the package can be used in conjunction with any software used to estimate the IRT model (e.g. 'TAM', 'mirt', 'eRm' or 'IRToys' in 'R', or 'Stata', 'Mplus', etc.), 'WrightMap' features special integration with 'ConQuest' to facilitate reading and plotting its output directly.The 'wrightMap' function creates Wright Maps based on person estimates and item parameters produced by an item response analysis. The 'CQmodel' function reads output files created using 'ConQuest' software and creates a set of data frames for easy data manipulation, bundled in a 'CQmodel' object. The 'wrightMap' function can take a 'CQmodel' object as input or it can be used to create Wright Maps directly from data frames of person and item parameters. |
Authors: | David Torres Irribarra [aut, cre], Rebecca Freund [aut] |
Maintainer: | David Torres Irribarra <[email protected]> |
License: | BSD_2_clause + file LICENSE |
Version: | 1.4 |
Built: | 2024-11-02 05:42:48 UTC |
Source: | https://github.com/david-ti/wrightmap |
The CCCfit
function is intended for contrasting a Rasch model's expected category characteristic curve against the empirical data from observed responses. The CCCfit
function displays the expected probability asociated with all response categories and plots the observed response proportions for all non-zero response categories.
CCCfit(itemNumber, observedResponses, personEstimates, itemParameters, xlim = c(-4, 4), method = "Quantile", NQtiles = 10)
CCCfit(itemNumber, observedResponses, personEstimates, itemParameters, xlim = c(-4, 4), method = "Quantile", NQtiles = 10)
itemNumber |
The position of the item in the test. This position is used to select the column of observed responses and the item difficulty among the item parameters. |
observedResponses |
Data frame or matrix with observed responses. The data frame or matrix should be of size N * I, where N is the number of respondents and I is the number of items in the model. |
personEstimates |
A vector of length N containing the model based person estimates or predictions. |
itemParameters |
A data frame or matrix with I rows (one for each item) and M columns, where M is equal to the maximum number of item scores minus 1. This matrix contains the model based estimates for the step parameters (deltas), where column 1 contains the parameter associated with the step between category 0 versus category 1, column 2 the step parameters of category 1 versus category 2, and so on. |
xlim |
Vector with two values indicating the minimum and maximum values to be used when plotting the item characteristic curve. |
method |
Selects the |
NQtiles |
This value controls how many grouping will be used: 4 groups cases groups respondents by quartiles, 5 by quintiles, 10 by deciles, etc. |
The function uses the step difficulty parameters to generate the model based curve. The observed responses are then grouped using the Quantile
method in order to contrast the model predicted response probability with the observed proportion (this is the only method implemented so far). By default the function uses deciles to generate the respondent groups.
David Torres Irribarra
##---- Should be DIRECTLY executable !! ---- ##-- ==> Define data, use random, ##-- or do help(data=index) for the standard data sets. ## The function is currently defined as function (itemNumber, observedResponses, personEstimates, itemParameters, xlim = c(-4, 4), method = "Quantile", NQtiles = 10) { curve.cols <- paste(RColorBrewer::brewer.pal(n = 8, name = "Dark2"), "40", sep = "") points.cols <- RColorBrewer::brewer.pal(n = 8, name = "Dark2") deltas <- itemParameters[itemNumber, ] deltas <- deltas[!is.na(deltas)] maxCat <- length(deltas) probCCC <- function(theta, deltas) { original.length <- length(deltas) + 1 deltas <- deltas[!is.na(deltas)] deltas <- c(0, deltas) lN <- length(deltas) M <- matrix(rep(NA, lN), ncol = lN) CM <- matrix(rep(NA, lN), ncol = lN) M[, 1] <- 0 CM[, 1] <- 1 for (k in 2:lN) { M[, k] <- M[, (k - 1)] + theta - deltas[k] CM[, k] <- CM[, (k - 1)] + exp(M[, k]) } output <- exp(M)/CM[, k] length(output) <- original.length output } categoryProbs <- sapply(seq(xlim[1], xlim[2], length = 100), probCCC, deltas = deltas) plot(seq(xlim[1], xlim[2], length = 100), categoryProbs[1, ], type = "n", axes = FALSE, xlab = "Proficiency", ylab = "Proportion", ylim = c(0, 1)) axis(2, las = 1) axis(1) lines(seq(xlim[1], xlim[2], length = 100), categoryProbs[1, ], type = "l", lwd = 3, lty = 1, col = "grey80") nCats <- length(deltas) + 1 for (i in 2:nCats) { lines(seq(xlim[1], xlim[2], length = 100), categoryProbs[i, ], lwd = 3, col = curve.cols[i - 1]) } if (method == "Quantile") { agg.data <- list() size.data <- list() for (i in 1:maxCat) { recodedResponses <- observedResponses == i cutPoints <- quantile(personEstimates, seq(0, 1, length = NQtiles + 1)) agg.data[[i]] <- aggregate(recodedResponses, by = list(cut(personEstimates, cutPoints)), FUN = mean, na.rm = TRUE) breakMeans <- aggregate(personEstimates, by = list(cut(personEstimates, cutPoints)), FUN = mean, na.rm = TRUE) agg.data[[i]][, 1] <- breakMeans[, 2] agg.data[[i]][, -1][agg.data[[i]][, -1] == 1] <- 0.999 agg.data[[i]][, -1][agg.data[[i]][, -1] == 0] <- 0.001 size.data[[i]] <- aggregate(is.na(recodedResponses), by = list(cut(personEstimates, cutPoints)), FUN = length) size.data[[i]][, 1] <- breakMeans[, 2] points(agg.data[[i]][, 1], agg.data[[i]][, itemNumber + 1], type = "b", pch = i, cex = 0.75, col = points.cols[i], lwd = 2) } } legend("right", horiz = FALSE, legend = paste("Cat", seq(1:maxCat)), col = points.cols[1:maxCat], pch = 1:maxCat, cex = 0.8, bty = "n") title(paste("Item", itemNumber)) }
##---- Should be DIRECTLY executable !! ---- ##-- ==> Define data, use random, ##-- or do help(data=index) for the standard data sets. ## The function is currently defined as function (itemNumber, observedResponses, personEstimates, itemParameters, xlim = c(-4, 4), method = "Quantile", NQtiles = 10) { curve.cols <- paste(RColorBrewer::brewer.pal(n = 8, name = "Dark2"), "40", sep = "") points.cols <- RColorBrewer::brewer.pal(n = 8, name = "Dark2") deltas <- itemParameters[itemNumber, ] deltas <- deltas[!is.na(deltas)] maxCat <- length(deltas) probCCC <- function(theta, deltas) { original.length <- length(deltas) + 1 deltas <- deltas[!is.na(deltas)] deltas <- c(0, deltas) lN <- length(deltas) M <- matrix(rep(NA, lN), ncol = lN) CM <- matrix(rep(NA, lN), ncol = lN) M[, 1] <- 0 CM[, 1] <- 1 for (k in 2:lN) { M[, k] <- M[, (k - 1)] + theta - deltas[k] CM[, k] <- CM[, (k - 1)] + exp(M[, k]) } output <- exp(M)/CM[, k] length(output) <- original.length output } categoryProbs <- sapply(seq(xlim[1], xlim[2], length = 100), probCCC, deltas = deltas) plot(seq(xlim[1], xlim[2], length = 100), categoryProbs[1, ], type = "n", axes = FALSE, xlab = "Proficiency", ylab = "Proportion", ylim = c(0, 1)) axis(2, las = 1) axis(1) lines(seq(xlim[1], xlim[2], length = 100), categoryProbs[1, ], type = "l", lwd = 3, lty = 1, col = "grey80") nCats <- length(deltas) + 1 for (i in 2:nCats) { lines(seq(xlim[1], xlim[2], length = 100), categoryProbs[i, ], lwd = 3, col = curve.cols[i - 1]) } if (method == "Quantile") { agg.data <- list() size.data <- list() for (i in 1:maxCat) { recodedResponses <- observedResponses == i cutPoints <- quantile(personEstimates, seq(0, 1, length = NQtiles + 1)) agg.data[[i]] <- aggregate(recodedResponses, by = list(cut(personEstimates, cutPoints)), FUN = mean, na.rm = TRUE) breakMeans <- aggregate(personEstimates, by = list(cut(personEstimates, cutPoints)), FUN = mean, na.rm = TRUE) agg.data[[i]][, 1] <- breakMeans[, 2] agg.data[[i]][, -1][agg.data[[i]][, -1] == 1] <- 0.999 agg.data[[i]][, -1][agg.data[[i]][, -1] == 0] <- 0.001 size.data[[i]] <- aggregate(is.na(recodedResponses), by = list(cut(personEstimates, cutPoints)), FUN = length) size.data[[i]][, 1] <- breakMeans[, 2] points(agg.data[[i]][, 1], agg.data[[i]][, itemNumber + 1], type = "b", pch = i, cex = 0.75, col = points.cols[i], lwd = 2) } } legend("right", horiz = FALSE, legend = paste("Cat", seq(1:maxCat)), col = points.cols[1:maxCat], pch = 1:maxCat, cex = 0.8, bty = "n") title(paste("Item", itemNumber)) }
The CQmodel function reads ConQuest item parameter and person parameter output files and converts them into a list of data frames for more convenient data processing.
CQmodel(p.est = NULL, show = NULL, p.type = NULL, equation = NULL) ## S3 method for class 'CQmodel' print(x,...) ## S3 method for class 'SOE' print(x,...)
CQmodel(p.est = NULL, show = NULL, p.type = NULL, equation = NULL) ## S3 method for class 'CQmodel' print(x,...) ## S3 method for class 'SOE' print(x,...)
p.est |
Conquest person parameters file (EAPs, MLEs, etc.). |
show |
ConQuest show file. |
p.type |
Type of person parameter estimate (EAP, MLE or WLE). If not specified, will try to determine from the extension of the p.est file. |
equation |
String giving the model equation, if the Summary of Estimation table was not included in the show file. |
x |
Object that determines which function to call. |
... |
Additional arguments. |
CQmodel returns an object of type CQmodel. Usually contains: Tables:
RMP |
A list of data frames containing the response model parameter estimates. One data frame is created for each table in the output. Each data frame contains parameter estimates, errors, and fit information. |
GIN |
A matrix containing the item thresholds (if included in the ConQuest output). The rows are items and the columns are steps. |
p.est |
A data frame containing the person parameter estimates |
Summary of estimation:
SOE |
A list of various parameters related to the estimation |
Items that may be in the SOE list include:
method |
Estimation method |
distribution |
Assumed population distribution |
constraint |
Constraint |
format |
Specified format of the datafile |
equation |
A character string containing the item model (e.g. "item+item*step") |
participants |
Sample size |
deviance |
Final deviance of the model |
parameters |
Total number of estimated parameters |
iterations |
Number of iterations |
seed |
Random number generation seed |
PV.nodes |
Number of nodes used when drawing PVs |
fit.nodes |
Number of nodes used when computing fit |
n.plausible.values |
Number of plausible values drawn |
max.iterations.no.improvement |
Maximum number of iterations without a deviance improvement |
max.steps |
Maximum number of Newton steps in M-step |
zero.perfect.value |
Value for obtaining finite MLEs for zero/perfects |
termination.reason |
Reason for iteration termination |
max.iterations |
|
parameter.change |
|
deviance.change |
Run details:
run.details |
A list of details of the run |
Items that may be included in the run.details list include:
date |
The date of the ConQuest run |
data.file |
The name of the datafile used |
format |
The specified format of the datafile |
names |
Names of items and/or dimensions |
Additional items:
deviance |
The deviance of the model |
equation |
A character string containing the model specification (e.g. "item+item*step") |
participants |
The number of participants |
parameters |
The number of parameters |
title |
The run title |
reg.coef |
Regression coefficients |
rel.coef |
Reliability coefficients |
variances |
|
nDim |
Number of dimensions |
dimensions |
Dimension names |
p.est.type |
Rebecca Freund and David Torres Irribarra
fpath <- system.file("extdata", package="WrightMap") # Partial credit model model1 <- CQmodel(p.est = file.path(fpath,"ex2.eap"), show = file.path(fpath,"ex2.shw")) model1 #Shows what tables are available model1$SOE #Summary of estimation model1$equation # Model specification model1$reg.coef # Regression coefficients model1$rel.coef # Reliability coefficients model1$variances # Variances names(model1$RMP) # Names of parameter tables head(model1$RMP$item) #Item parameters head(model1$RMP$"item*step") #Item by step parameters # Complex model model2 <- CQmodel(file.path(fpath,"ex4a.mle"), file.path(fpath,"ex4a.shw")) model2$equation # Model specification names(model2$RMP) # Names of parameter tables head(model2$RMP$"rater*topic*criteria*step") #An interaction table model1$GIN #Item thresholds model2$GIN #Item thresholds head(model1$p.est) ##EAPs head(model2$p.est) ##MLEs
fpath <- system.file("extdata", package="WrightMap") # Partial credit model model1 <- CQmodel(p.est = file.path(fpath,"ex2.eap"), show = file.path(fpath,"ex2.shw")) model1 #Shows what tables are available model1$SOE #Summary of estimation model1$equation # Model specification model1$reg.coef # Regression coefficients model1$rel.coef # Reliability coefficients model1$variances # Variances names(model1$RMP) # Names of parameter tables head(model1$RMP$item) #Item parameters head(model1$RMP$"item*step") #Item by step parameters # Complex model model2 <- CQmodel(file.path(fpath,"ex4a.mle"), file.path(fpath,"ex4a.shw")) model2$equation # Model specification names(model2$RMP) # Names of parameter tables head(model2$RMP$"rater*topic*criteria*step") #An interaction table model1$GIN #Item thresholds model2$GIN #Item thresholds head(model1$p.est) ##EAPs head(model2$p.est) ##MLEs
This function takes as its input a TAM object. It adds reads the TAM item parameters and organizes them into a matrix that can be used as input in the CCCfit
function.
extract.deltas(tamObject)
extract.deltas(tamObject)
tamObject |
TAM object containing the results of a a Rasch model or Partial Credit model. |
This function organizes the item parameter results into a matrix where each row is contains the parameters associated with an item and each columns is contains the parameters associated with a specific step (score 0 vs score 1, score 1 vs score 2, etc.). The resulting matrix will have as many rows as items and as many columns as the maximum number of steps among the items.
A matrix in which each row is an item and each column is a step
David Torres Irribarra
Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47(2), 149-174.
##---- Should be DIRECTLY executable !! ---- ##-- ==> Define data, use random, ##-- or do help(data=index) for the standard data sets. ## The function is currently defined as function (tamObject) { delta.long <- tamObject$xsi n.deltas <- apply(tamObject$B, 1, max) delta.mat <- matrix(NA, nrow = length(n.deltas), ncol = max(n.deltas)) matCoords.row <- rep(1:length(n.deltas), n.deltas) matCoords.col <- c() for (i in 1:length(n.deltas)) { for (j in 1:n.deltas[i]) { matCoords.col <- c(matCoords.col, j) } } delta.long$matCoords.row <- matCoords.row delta.long$matCoords.col <- matCoords.col for (k in 1:nrow(delta.long)) { delta.mat[delta.long$matCoords.row[k], delta.long$matCoords.col[k]] <- delta.long$xsi[k] } delta.mat }
##---- Should be DIRECTLY executable !! ---- ##-- ==> Define data, use random, ##-- or do help(data=index) for the standard data sets. ## The function is currently defined as function (tamObject) { delta.long <- tamObject$xsi n.deltas <- apply(tamObject$B, 1, max) delta.mat <- matrix(NA, nrow = length(n.deltas), ncol = max(n.deltas)) matCoords.row <- rep(1:length(n.deltas), n.deltas) matCoords.col <- c() for (i in 1:length(n.deltas)) { for (j in 1:n.deltas[i]) { matCoords.col <- c(matCoords.col, j) } } delta.long$matCoords.row <- matCoords.row delta.long$matCoords.col <- matCoords.col for (k in 1:nrow(delta.long)) { delta.mat[delta.long$matCoords.row[k], delta.long$matCoords.col[k]] <- delta.long$xsi[k] } delta.mat }
This function creates a graphical summary of the item fit information.
## Default S3 method: fitgraph(fitEst, fitLB, fitUB, itemLabels, mainTitle = "Fit Plot", pch = 18, fitColours = c("gray70", "gray60", "gray50", "gray40", "gray0"), xlab = "Items", cex = 1.25, ...) ## S3 method for class 'numeric' fitgraph(fitEst, fitLB, fitUB, itemLabels, mainTitle = "Fit Plot", pch = 18, fitColours = c("gray70", "gray60", "gray50", "gray40", "gray0"), xlab = "Items", cex = 1.25, ...) ## S3 method for class 'CQmodel' fitgraph(fitEst, table = NULL, fit.type = "W", itemLabels = NULL, ...) ## S3 method for class 'character' fitgraph(fitEst, ...)
## Default S3 method: fitgraph(fitEst, fitLB, fitUB, itemLabels, mainTitle = "Fit Plot", pch = 18, fitColours = c("gray70", "gray60", "gray50", "gray40", "gray0"), xlab = "Items", cex = 1.25, ...) ## S3 method for class 'numeric' fitgraph(fitEst, fitLB, fitUB, itemLabels, mainTitle = "Fit Plot", pch = 18, fitColours = c("gray70", "gray60", "gray50", "gray40", "gray0"), xlab = "Items", cex = 1.25, ...) ## S3 method for class 'CQmodel' fitgraph(fitEst, table = NULL, fit.type = "W", itemLabels = NULL, ...) ## S3 method for class 'character' fitgraph(fitEst, ...)
fitgraph arguments:
fitEst |
vector of item fit estimates. Could also be a CQmodel object or name of a ConQuest show file. |
fitLB |
vector of lower bounds for critical intervals for each item. |
fitUB |
vector of upper bounds for critical intervals for each item. |
itemLabels |
vector of item labels. |
mainTitle |
string containing the title of the plot. |
pch |
number or vector indicating the type of symbols to be used for each item. |
fitColours |
Color that will be used to shade the critical inteval area. |
xlab |
Label of the x-axis. The default is 'items'. |
cex |
Size of the x-axis label. |
... |
Additional parameters. |
Argument to use when passing a CQmodel object:
table |
Name of the RMP table that for which the fit will be plotted. By default |
fit.type |
Type of fit estimate that will be used, it can be |
David Torres Irribarra and Rebecca Freund.
Wilson, M. (2005). Constructing measures: An item response modeling approach.
# Generating mock data sampleLabels <- paste('item',1:10) fitBounds <- (abs(rnorm(10, mean = 0, sd = .05)) * 2) fitEst <- rnorm(10, mean = 1, sd = .1) fitLB <- 1 - fitBounds fitUB <- 1 + fitBounds par("mar") # running fitgraph fitgraph(fitEst,fitLB,fitUB,itemLabels=sampleLabels) #From ConQuest output: fpath <- system.file("extdata", package="WrightMap") fitgraph(file.path(fpath,"ex2.shw"))
# Generating mock data sampleLabels <- paste('item',1:10) fitBounds <- (abs(rnorm(10, mean = 0, sd = .05)) * 2) fitEst <- rnorm(10, mean = 1, sd = .1) fitLB <- 1 - fitBounds fitUB <- 1 + fitBounds par("mar") # running fitgraph fitgraph(fitEst,fitLB,fitUB,itemLabels=sampleLabels) #From ConQuest output: fpath <- system.file("extdata", package="WrightMap") fitgraph(file.path(fpath,"ex2.shw"))
The ICCfit
function is intended for contrasting a Rasch model's expected item characteristic curve against the empirical data from dichotomous responses. The ICCfit
function displays a confidence interval for the model based curve and plots the confidence interval for the empirical proportions.
ICCfit(itemNumber, observedResponses, personEstimates, itemParameters, xlim = c(-4, 4), method = "Quantile", NQtiles = 10)
ICCfit(itemNumber, observedResponses, personEstimates, itemParameters, xlim = c(-4, 4), method = "Quantile", NQtiles = 10)
itemNumber |
The position of the item in the test. This position is used to select the column of observed responses and the item difficulty among the item parameters. |
observedResponses |
Data frame or matrix with observed responses. The data frame or matrix should be of size N * I, where N is the number of respondents and I is the number of items in the model. |
personEstimates |
A vector of length N containing the model based person estimates or predictions. |
itemParameters |
A data frame or matrix of dimensions I * 2 containing the model based item difficulty estimates in the firs column and the parameter standard error in the second column. |
xlim |
Vector with two values indicating the minimum and maximum values to be used when plotting the item characteristic curve. |
method |
Selects the method used to group the respondents: |
NQtiles |
When using the |
The function uses the item difficulty parameter to generate the model based curve and the item difficulty parameter standard error to plot a confidence interval around the curve. The observed responses are then grouped using the selected method in order to contrast the model predicted response probability with the observed proportion. By default the function uses deciles to generate the respondent groups. The function allows the method ByPersonEstimate
in order to make a different group for each observed person estimate (potentially useful when analyzing test data with large numbers with no missing data), and the Histogram
method, which uses the Freedman-Diaconis algorithm to select the width of the bands used for grouping.
David Torres Irribarra
# Simulate 1000 persons and 5 items with 2 levels (Rasch model) set.seed(123) simulated_data <- sim.PCM(pN = 1000, iN = 5, lN = 2) # Extract simulated item responses and abilities observed_responses <- simulated_data$resp - 1 person_abilities <- simulated_data$theta item_params <- cbind(simulated_data$delta[,2],rep(0.08),5) # Defining a 0.08 of error for the item parameters, # this usually would be estimated. # Plot the ICC for the first item using the Quantile method ICCfit(itemNumber = 1, observedResponses = observed_responses, personEstimates = person_abilities, itemParameters = item_params, method = "Quantile", NQtiles = 10)
# Simulate 1000 persons and 5 items with 2 levels (Rasch model) set.seed(123) simulated_data <- sim.PCM(pN = 1000, iN = 5, lN = 2) # Extract simulated item responses and abilities observed_responses <- simulated_data$resp - 1 person_abilities <- simulated_data$theta item_params <- cbind(simulated_data$delta[,2],rep(0.08),5) # Defining a 0.08 of error for the item parameters, # this usually would be estimated. # Plot the ICC for the first item using the Quantile method ICCfit(itemNumber = 1, observedResponses = observed_responses, personEstimates = person_abilities, itemParameters = item_params, method = "Quantile", NQtiles = 10)
The itemData
and personData
functions take CQmodel objects (or ConQuest output files) as inputs and return a vector or matrix. They were originally developed for use by wrightMap
, but are separated out here to allow the outputs to be sent to other plotting functions.
itemData(thresholds, ...) ## Default S3 method: itemData(thresholds, item.type = "deltas",...) ## S3 method for class 'character' itemData(thresholds, p.type = NULL, equation = NULL, ...) ## S3 method for class 'CQmodel' itemData(thresholds, item.table = NULL, interactions = NULL, step.table = NULL, item.type = "default", throld = 0.5, ...) personData(thetas,...) ## Default S3 method: personData(thetas,...) ## S3 method for class 'character' personData(thetas, p.type = NULL,...) ## S3 method for class 'CQmodel' personData(thetas,...)
itemData(thresholds, ...) ## Default S3 method: itemData(thresholds, item.type = "deltas",...) ## S3 method for class 'character' itemData(thresholds, p.type = NULL, equation = NULL, ...) ## S3 method for class 'CQmodel' itemData(thresholds, item.table = NULL, interactions = NULL, step.table = NULL, item.type = "default", throld = 0.5, ...) personData(thetas,...) ## Default S3 method: personData(thetas,...) ## S3 method for class 'character' personData(thetas, p.type = NULL,...) ## S3 method for class 'CQmodel' personData(thetas,...)
itemData arguments:
thresholds |
Usually, a CQmodel object or the name of a ConQuest show file. Will also accept a matrix, but this is only really for use within other functions. In general |
item.type |
Indicates whether to use |
equation |
string giving the model equation, if the Summary of Estimation table was not included in the show file. |
item.table |
Name of RMP table to use for the main effect of the item parameters. |
interactions |
Name of RMP interaction table to use in addition to |
step.table |
Name of RMP table to use in addition to |
throld |
The probability level to be used for calculating thresholds. |
... |
Additional parameters to pass to |
personData arguments:
thetas |
a CQModel object or the name of the Conquest person parameters file (EAPs, MLEs, etc.) |
p.type |
Type of person parameter estimate (EAP, MLE or WLE). |
The itemData and personData functions are usually called by wrightMap
. They can also be called directly.
For the itemData function, note that the item.table
, interactions
, and step.table
parameters must be the exact name of specific RMP tables. You cannot specify an interactions table or a step table without also specifying an item table (although JUST an item table is fine). If your model equation is more complicated, you will have to either use a GIN table or specify in the function call which tables to use for what. A model of the form item + item * step + booklet, for example, will not run unless there is a GIN table or you have defined at least the item.table.
The itemData functions return a vector of item parameters, or a matrix in which the rows are items and the columns are steps. The personData functions return a vector of person paramenters, or a matrix in which the rows are persons and the columns are dimensions.
Rebecca Freund and David Torres Irribarra
item.side
person.side
make.thresholds
make.deltas
wrightMap
#As a call from wrightMap: fpath <- system.file("extdata", package="WrightMap") model1 <- CQmodel(file.path(fpath,"ex2a.eap"), file.path(fpath,"ex2a.shw")) # Making thresholds if there are no GIN tables (partial credit model) wrightMap(model1, type = "thresholds") #Complex model: model2 <- CQmodel(file.path(fpath,"ex4a.mle"), file.path(fpath,"ex4a.shw")) wrightMap(model2, item.table = "rater") wrightMap(model2, item.table = "rater", interactions = "rater*topic", step.table = "topic") # Plotting item results fpath <- system.file("extdata", package="WrightMap") model3 <- CQmodel(file.path(fpath,"ex2a.eap"), file.path(fpath,"ex2a.shw")) m3.item <- itemData(model3) dev.new(width=10, height=10) #control of oma allows us to give more space to longer item names itemModern(m3.item, label.items.srt= 90, oma = c(2,0,0,2)) itemClassic(m3.item) itemHist(m3.item) m3.person <- personData(model3) personHist(m3.person) personDens(m3.person)
#As a call from wrightMap: fpath <- system.file("extdata", package="WrightMap") model1 <- CQmodel(file.path(fpath,"ex2a.eap"), file.path(fpath,"ex2a.shw")) # Making thresholds if there are no GIN tables (partial credit model) wrightMap(model1, type = "thresholds") #Complex model: model2 <- CQmodel(file.path(fpath,"ex4a.mle"), file.path(fpath,"ex4a.shw")) wrightMap(model2, item.table = "rater") wrightMap(model2, item.table = "rater", interactions = "rater*topic", step.table = "topic") # Plotting item results fpath <- system.file("extdata", package="WrightMap") model3 <- CQmodel(file.path(fpath,"ex2a.eap"), file.path(fpath,"ex2a.shw")) m3.item <- itemData(model3) dev.new(width=10, height=10) #control of oma allows us to give more space to longer item names itemModern(m3.item, label.items.srt= 90, oma = c(2,0,0,2)) itemClassic(m3.item) itemHist(m3.item) m3.person <- personData(model3) personHist(m3.person) personDens(m3.person)
Draw the item side of a Wright Map in a variety of styles. Intended to be primarily called by wrightMap
, but also available for use on their own.
itemModern(thr, yRange = NULL, axis.items = "Items", show.thr.sym = TRUE , thr.sym.cex = 0.8, thr.sym.lwd = 1, thr.sym.pch = 23 , thr.sym.col.fg = rgb(0, 0, 0, 0.3), thr.sym.col.bg = rgb(0, 0, 0, 0.3) , show.thr.lab = TRUE, thr.lab.pos = c(2, 4), thr.lab.text = NULL , thr.lab.col = "black", thr.lab.cex = 0.5, thr.lab.font = 2, label.items.rows = 1 , label.items.srt = 0, label.items = NULL, label.items.cex = 0.6 , label.items.ticks = TRUE, axis.logits = "Logits", show.axis.logits = "R" , axis.logits.cex = 0.7, oma = c(0, 0, 0, 3), cutpoints = NULL , vertLines = FALSE, vertLines.par = list(), cutpoints.par = list() , thr.sym.par = list(), thr.lab.par = list(), label.items.par = list() , axis.logits.par = list(), logits.text.par = list(), ...) itemClassic(thr, yRange = NULL, axis.items = "Items", axis.logits = "Logits" , show.axis.logits = "R", axis.logits.cex = 0.7, oma = c(0, 0, 0, 3) , cutpoints = NULL, cutpoints.par = list(), label.items = NULL, label.steps = NULL , label.sep = ".", thr.lab.sep = " | ", thr.lab.par = list(), axis.logits.par = list() , logits.text.par = list(), pad.char = "_", font.family = "mono", ...) itemHist(thr, yRange = NULL, axis.items = "Items", axis.logits = "Logits" , show.axis.logits = "R", axis.logits.cex = 0.7, oma = c(0, 0, 0, 3) , cutpoints = NULL, axis.logits.par = list(), logits.text.par = list() , cutpoints.par = list(), ...)
itemModern(thr, yRange = NULL, axis.items = "Items", show.thr.sym = TRUE , thr.sym.cex = 0.8, thr.sym.lwd = 1, thr.sym.pch = 23 , thr.sym.col.fg = rgb(0, 0, 0, 0.3), thr.sym.col.bg = rgb(0, 0, 0, 0.3) , show.thr.lab = TRUE, thr.lab.pos = c(2, 4), thr.lab.text = NULL , thr.lab.col = "black", thr.lab.cex = 0.5, thr.lab.font = 2, label.items.rows = 1 , label.items.srt = 0, label.items = NULL, label.items.cex = 0.6 , label.items.ticks = TRUE, axis.logits = "Logits", show.axis.logits = "R" , axis.logits.cex = 0.7, oma = c(0, 0, 0, 3), cutpoints = NULL , vertLines = FALSE, vertLines.par = list(), cutpoints.par = list() , thr.sym.par = list(), thr.lab.par = list(), label.items.par = list() , axis.logits.par = list(), logits.text.par = list(), ...) itemClassic(thr, yRange = NULL, axis.items = "Items", axis.logits = "Logits" , show.axis.logits = "R", axis.logits.cex = 0.7, oma = c(0, 0, 0, 3) , cutpoints = NULL, cutpoints.par = list(), label.items = NULL, label.steps = NULL , label.sep = ".", thr.lab.sep = " | ", thr.lab.par = list(), axis.logits.par = list() , logits.text.par = list(), pad.char = "_", font.family = "mono", ...) itemHist(thr, yRange = NULL, axis.items = "Items", axis.logits = "Logits" , show.axis.logits = "R", axis.logits.cex = 0.7, oma = c(0, 0, 0, 3) , cutpoints = NULL, axis.logits.par = list(), logits.text.par = list() , cutpoints.par = list(), ...)
General arguments:
thr |
A vector or matrix of threshold parameters. If a matrix, items should be in rows and steps in columns. |
yRange |
A vector with 2 elements specifying the lower and upper limits of the plot's y-axis. |
label.items |
A vector of strings representing the item labels used in itemModern and itemClassic |
axis.items |
The title of the x-axis. |
axis.logits |
The title of the y-axis. |
axis.logits.cex |
The size of the logit values on the y-axis. |
show.axis.logits |
If set to "R" or "L", draws a logit axis on the right or left. Will also draw an axis on the right if the value is |
oma |
Values to use for the |
cutpoints |
Values at which to draw horizontal lines (see |
label.items.par |
A list of parameters to further customize item labels. |
axis.logits.par |
A list of parameters for customizing the logit axis. |
logits.text.par |
A list of parameters for customizing the logit axis text. |
... |
Additional arguments passed to |
Specific to itemModern
:
show.thr.sym |
Logical. If |
thr.sym.cex |
An integer, vector, or matrix of numerical values indicating the magnification of the threshold symbols. |
thr.sym.lwd |
An integer, vector, or matrix of positive numbers specifying the width of the lines used in the threshold symbols. |
thr.sym.pch |
An integer, vector, or matrix specifying a symbol or single character used to represent item thresholds. |
thr.sym.col.fg |
An integer, vector, or matrix of numerical values indicating the foreground color for the threshold symbols. |
thr.sym.col.bg |
An integer, vector, or matrix of numerical values indicating the background color for the threshold symbols. |
show.thr.lab |
Logical. If |
thr.lab.pos |
An integer, vector, or matrix indicating the position for displaying the threshold labels. Values 1, 2, 3, and 4 indicate below, left, above, and right, respectively. |
thr.lab.text |
A matrix containing the text labels for the item thresholds, where each row represents an item, and each column represents a level. |
thr.lab.col |
A matrix specifying the color for each threshold label. |
thr.lab.cex |
A numerical value indicating the magnification factor for the threshold labels. |
thr.lab.font |
An integer or matrix specifying the font type for the threshold labels. 1 = plain, 2 = bold, 3 = italic, 4 = bold italic. |
label.items.rows |
An integer specifying the number of rows used to display the item labels (default: 1). Useful when item labels overlap. |
label.items.srt |
Angle of rotation for item labels. Only applicable if |
label.items.cex |
A numerical value specifying the magnification factor for the item labels. |
label.items.ticks |
Logical. If |
vertLines |
Logical. If |
vertLines.par |
A list of parameters (e.g., |
cutpoints.par |
A list of parameters (e.g., |
thr.sym.par |
A list of parameters to further customize threshold symbols. |
thr.lab.par |
A list of parameters to further customize threshold labels. |
Specific to itemClassic
:
label.steps |
A vector specifying the labels for the threshold steps. |
label.sep |
A string indicating the separator used between item labels and step labels. |
thr.lab.sep |
A string indicating the separator used between threshold labels for different items. |
pad.char |
A character used to pad item labels to a fixed width. |
font.family |
A string specifying the font family for the item labels (default: |
These functions are designed as helper functions for wrightMap
to draw the item side of a map. When called outside of that function, they can be used to create more customized maps. Possible uses include:
Draw an item map on its own.
Compare two item maps in a single figure.
Draw a Wright Map with the item side on the left and the person side on the right.
When combining with a person.side
function, note that those functions use split.screen
, which are incompatible with layout
and some other plotting functions. Ensure that all graphs on a single plot have their yRange
explicitly specified to maintain comparable values across plots.
Rebecca Freund and David Torres Irribarra
wrightMap
, person.side
, itemData
#As a call from wrightMap: ## Mock results uni.proficiency <- rnorm(1000, mean = -0.5, sd = 1) items.loc <- sort(rnorm(20)) thresholds <- data.frame( l1 = items.loc - 0.5, l2 = items.loc - 0.25, l3 = items.loc + 0.25, l4 = items.loc + 0.5 ) ## Setting up labels, colors, and symbols thresholds.labels <- data.frame( l1 = paste('Lev', rep(1, 20), sep = ''), l2 = paste('Lev', rep(2, 20), sep = ''), l3 = paste('Lev', rep(3, 20), sep = ''), l4 = paste('Lev', rep(4, 20), sep = '') ) thresholds.colors <- data.frame( l1 = rep('green', 20), l2 = rep('red', 20), l3 = rep('yellow', 20), l4 = rep('blue', 20) ) thresholds.symbols <- data.frame( l1 = rep(15, 20), l2 = rep(16, 20), l3 = rep(17, 20), l4 = rep(18, 20) ) wrightMap(uni.proficiency, thresholds, thr.lab.text = thresholds.labels, thr.lab.col = as.vector(as.matrix(thresholds.colors)), thr.sym.pch = thresholds.symbols ) # Direct call: ## Plotting results of a unidimensional Rating Scale Model items.loc <- sort(rnorm(20)) thresholds <- data.frame( l1 = items.loc - 0.5, l2 = items.loc - 0.25, l3 = items.loc + 0.25, l4 = items.loc + 0.5 ) itemModern(thresholds) itemClassic(thresholds) itemHist(thresholds)
#As a call from wrightMap: ## Mock results uni.proficiency <- rnorm(1000, mean = -0.5, sd = 1) items.loc <- sort(rnorm(20)) thresholds <- data.frame( l1 = items.loc - 0.5, l2 = items.loc - 0.25, l3 = items.loc + 0.25, l4 = items.loc + 0.5 ) ## Setting up labels, colors, and symbols thresholds.labels <- data.frame( l1 = paste('Lev', rep(1, 20), sep = ''), l2 = paste('Lev', rep(2, 20), sep = ''), l3 = paste('Lev', rep(3, 20), sep = ''), l4 = paste('Lev', rep(4, 20), sep = '') ) thresholds.colors <- data.frame( l1 = rep('green', 20), l2 = rep('red', 20), l3 = rep('yellow', 20), l4 = rep('blue', 20) ) thresholds.symbols <- data.frame( l1 = rep(15, 20), l2 = rep(16, 20), l3 = rep(17, 20), l4 = rep(18, 20) ) wrightMap(uni.proficiency, thresholds, thr.lab.text = thresholds.labels, thr.lab.col = as.vector(as.matrix(thresholds.colors)), thr.sym.pch = thresholds.symbols ) # Direct call: ## Plotting results of a unidimensional Rating Scale Model items.loc <- sort(rnorm(20)) thresholds <- data.frame( l1 = items.loc - 0.5, l2 = items.loc - 0.25, l3 = items.loc + 0.25, l4 = items.loc + 0.5 ) itemModern(thresholds) itemClassic(thresholds) itemHist(thresholds)
This function takes as its input a CQmodel object or the name of a ConQuest show file. It adds together the parameters as specified by the user, or if no tables are specified it reads the model equation to determine the appropriate tables to sum. This function is used by wrightMap to draw the item side of the map when a CQmodel is passed to wrightMap.
make.deltas(item.params, ...) ## S3 method for class 'character' make.deltas(item.params, ...) ## S3 method for class 'CQmodel' make.deltas(item.params, item.table = NULL, interactions = NULL, step.table = NULL, item.sign = NULL, inter.sign = NULL, step.sign = NULL, ...) ## Default S3 method: make.deltas(item.params, cross.params = 0, step.params = 0, item.sign = 1, step.sign = 1, inter.sign = 1, ...)
make.deltas(item.params, ...) ## S3 method for class 'character' make.deltas(item.params, ...) ## S3 method for class 'CQmodel' make.deltas(item.params, item.table = NULL, interactions = NULL, step.table = NULL, item.sign = NULL, inter.sign = NULL, step.sign = NULL, ...) ## Default S3 method: make.deltas(item.params, cross.params = 0, step.params = 0, item.sign = 1, step.sign = 1, inter.sign = 1, ...)
item.params |
The item parameters. Can either be a vector, a CQmodel object, or a path to a ConQuest show file |
item.table |
If item.params is a CQmodel object or a path to a ConQuest show file, item.table is the name of the items table. Commonly "item" but can be any string representing the name of a table in the ConQuest show file. This identifies what variable will form the rows of the delta matrix. If not specified, will be the first variable mentioned in the model equation. |
interactions |
If item.params is a CQmodel object or a path to a ConQuest show file, item.table is the name of the table with the interactions (if present). Commonly "item*step" but can be any string containing "*" that is the name of a table in the ConQuest show file. Should be the product of the item.table variable and the step.table variable (if present). If not specified, will be the product term of the model equation. |
step.table |
If item.params is a CQmodel object or a path to a ConQuest show file, step.table is the name of the steps table (if present). Commonly "step" but can be any string representing the name of a table in the ConQuest show file. This identifies what variable will form the columns of the delta matrix. If not specified, will be the second variable mentioned in the model equation. |
item.sign |
Can be 1 or -1. Indicates whether the item parameters should be added or subtracted. |
inter.sign |
Can be 1 or -1. Indicates whether the interaction parameters should be added or subtracted. |
step.sign |
Can be 1 or -1. Indicates whether the step parameters should be added or subtracted. |
cross.params |
If item.params is a vector, use this parameter to pass a matrix of interaction parameters. |
step.params |
If item.params is a vector, use this parameter to pass a matrix of step parameters. |
... |
Additional parameters |
This function reshapes the tables in the ConQuest show file and adds the step parameters to the appropriate items. The vector version of this is rarely called by the user.
A matrix in which each row is an item and each column is a step
Rebecca Freund & David Torres Irribarra
make.thresholds
CQmodel
wrightMap
fpath <- system.file("extdata", package="WrightMap") # Partial credit model model1 <- CQmodel(file.path(fpath,"ex2a.eap"), file.path(fpath,"ex2a.shw")) make.deltas(model1) # Rating scale model model2 <- CQmodel(file.path(fpath,"ex2b.eap"), file.path(fpath,"ex2b-2.shw")) make.deltas(model2) # Raters, criteria, topics model3 <- CQmodel(file.path(fpath,"ex4a.mle"), file.path(fpath,"ex4a.shw")) make.deltas(model3, item.table = "rater") make.deltas(model3, item.table = "rater", interactions = "rater*topic", step.table = "topic")
fpath <- system.file("extdata", package="WrightMap") # Partial credit model model1 <- CQmodel(file.path(fpath,"ex2a.eap"), file.path(fpath,"ex2a.shw")) make.deltas(model1) # Rating scale model model2 <- CQmodel(file.path(fpath,"ex2b.eap"), file.path(fpath,"ex2b-2.shw")) make.deltas(model2) # Raters, criteria, topics model3 <- CQmodel(file.path(fpath,"ex4a.mle"), file.path(fpath,"ex4a.shw")) make.deltas(model3, item.table = "rater") make.deltas(model3, item.table = "rater", interactions = "rater*topic", step.table = "topic")
This function accepts a matrix of delta parameters and converts them to thresholds (using a threshold of .5). It can also take as input a CQmodel object or a filename of a ConQuest show file.
make.thresholds(item.params, ...) ## S3 method for class 'character' make.thresholds(item.params, design.matrix = "normal",...) ## S3 method for class 'CQmodel' make.thresholds(item.params,item.table = NULL, interactions = NULL ,step.table = NULL, design.matrix = "normal", throld = 0.5, alpha = 1,...) ## Default S3 method: make.thresholds(item.params, design.matrix = "normal" , make.from = "deltas", theta.interval = c(-10, 10), throld = 0.5, alpha = 1 , c.params = 0,...) ## S3 method for class 'matrix' make.thresholds(item.params, design.matrix = "normal" , make.from = "deltas", theta.interval = c(-10, 10), throld = 0.5 , alpha = 1, c.params = 0,...)
make.thresholds(item.params, ...) ## S3 method for class 'character' make.thresholds(item.params, design.matrix = "normal",...) ## S3 method for class 'CQmodel' make.thresholds(item.params,item.table = NULL, interactions = NULL ,step.table = NULL, design.matrix = "normal", throld = 0.5, alpha = 1,...) ## Default S3 method: make.thresholds(item.params, design.matrix = "normal" , make.from = "deltas", theta.interval = c(-10, 10), throld = 0.5, alpha = 1 , c.params = 0,...) ## S3 method for class 'matrix' make.thresholds(item.params, design.matrix = "normal" , make.from = "deltas", theta.interval = c(-10, 10), throld = 0.5 , alpha = 1, c.params = 0,...)
item.params |
The item parameters. Can either be a matrix, a CQmodel object, or a path to a ConQuest show file |
design.matrix |
Can be "normal" or "ConQuest". Note that for a CQmodel object or ConQuest file, should be normal, NOT ConQuest. |
make.from |
Specifies whether the item.params matrix contains threshold or delta parameters. |
item.table |
If item.params is a CQmodel object or a path to a ConQuest show file, item.table is the name of the items table. Commonly "item" but can be any string representing the name of a table in the ConQuest show file. This identifies what variable will form the rows of the thresholds matrix. If not specified, will be the first variable mentioned in the model equation. |
interactions |
If item.params is a CQmodel object or a path to a ConQuest show file, item.table is the name of the table with the interactions (if present). Commonly "item*step" but can be any string containing "*" that is the name of a table in the ConQuest show file. Should be the product of the item.table variable and the step.table variable (if present). If not specified, will be the product term of the model equation. |
step.table |
If item.params is a CQmodel object or a path to a ConQuest show file, step.table is the name of the steps table (if present). Commonly "step" but can be any string representing the name of a table in the ConQuest show file. This identifies what variable will form the columns of the thresholds matrix. If not specified, will be the second variable mentioned in the model equation. |
theta.interval |
If item.params is a matrix, theta.interval specifies over what interval to search for the parameters. |
throld |
The probability level to use for calculating the thresholds. |
alpha |
A vector or single value for the slope parameter or parameters. |
c.params |
A vector or single value for the guessing parameter or parameters. |
... |
Additional parameters. |
A matrix of threshold parameters.
Daniel Coulter Furr, Rebecca Freund, & David Torres Irribarra
make.deltas
itemData
CQmodel
wrightMap
fpath <- system.file("extdata", package="WrightMap") # Partial credit model model1 <- CQmodel(file.path(fpath,"ex2a.eap"), file.path(fpath,"ex2a.shw")) deltas <- make.deltas(model1) make.thresholds(deltas) make.thresholds(model1)
fpath <- system.file("extdata", package="WrightMap") # Partial credit model model1 <- CQmodel(file.path(fpath,"ex2a.eap"), file.path(fpath,"ex2a.shw")) deltas <- make.deltas(model1) make.thresholds(deltas) make.thresholds(model1)
Draw the person side of a Wright Map in a variety of styles. Intended to be primarily called by wrightMap
, but also available for use on their own.
personHist(thetas, yRange = NULL, breaks = "FD", dim.lab.cex = 0.6, dim.lab.side = 3 , dim.lab.adj = 0.5, dim.names = NULL, dim.color = "white", person.points = NULL , person.range = NULL, p.point.col = "gray45", p.range.col = "gray75" , axis.persons = "Respondents", show.axis.persons = FALSE , axis.persons.par = list(), oma = c(0, 5, 0, 5), axis.logits = "Logits" , show.axis.logits = TRUE,...) personDens(thetas, yRange = NULL, dim.lab.cex = 0.6, dim.lab.side = 3, dim.lab.adj = 0.5 ,dim.names = NULL,dim.color = "black",person.points = NULL, person.range = NULL , p.point.col = "black", p.range.col = "gray70", oma = c(0, 5, 0, 5) , axis.logits = "Logits", show.axis.logits = TRUE , axis.persons = "Respondents",...)
personHist(thetas, yRange = NULL, breaks = "FD", dim.lab.cex = 0.6, dim.lab.side = 3 , dim.lab.adj = 0.5, dim.names = NULL, dim.color = "white", person.points = NULL , person.range = NULL, p.point.col = "gray45", p.range.col = "gray75" , axis.persons = "Respondents", show.axis.persons = FALSE , axis.persons.par = list(), oma = c(0, 5, 0, 5), axis.logits = "Logits" , show.axis.logits = TRUE,...) personDens(thetas, yRange = NULL, dim.lab.cex = 0.6, dim.lab.side = 3, dim.lab.adj = 0.5 ,dim.names = NULL,dim.color = "black",person.points = NULL, person.range = NULL , p.point.col = "black", p.range.col = "gray70", oma = c(0, 5, 0, 5) , axis.logits = "Logits", show.axis.logits = TRUE , axis.persons = "Respondents",...)
thetas |
vector or matrix of person parameters. If a matrix, persons should be the rows and dimensions the columns. |
yRange |
vector with 2 elements specifying the lower and upper limits of the plot's y-axis. |
dim.lab.cex |
An integer specifying the amount the dimension labels should be magnified relative to the default. |
dim.lab.side |
An integer specifying which side to plot the dimension names. Values of 1, 2, 3 (default), and 4, respectively, indicate positions below, to the left of, above, and to the right of the person distributions. |
dim.lab.adj |
A numerical value adjusting the position of the dimension names. |
dim.names |
A string or a vector of strings containing the names of each dimension. |
dim.color |
A numerical value or vector indicating the colors to be used for representing each dimension. |
person.points |
A vector of individual values to highlight. |
person.range |
A pair of values, an even-length vector, or a matrix with two rows. Values indicate the start and endpoints of ranges to highlight. If a matrix, the first row should be lower bounds and the second row upper bounds of the ranges. If a vector, the values should alternate: (lower1, upper1, lower2, upper2, ...). |
p.point.col |
A string or vector of strings indicating the color to use for the highlighted points. |
p.range.col |
A string or vector of strings indicating the color to use for the highlighted ranges. |
axis.persons |
The title of the y-axis on the left side. |
show.axis.persons |
Logical indicating whether to show the persons axis on the left side. Default is |
axis.persons.par |
A list of parameters to customize the appearance of the persons axis. This can include options such as |
oma |
Values to use for the |
show.axis.logits |
Logical indicating whether to show the logit axis. |
axis.logits |
The title of the y-axis on the right side. |
... |
Additional arguments passed to other methods (e.g., |
For personHist
:
breaks |
A parameter passed to the |
These functions are designed as helper functions for wrightMap
and ppPlot
to draw the person side of a map. When called outside of those functions, they can be used to create more customized maps. Possible uses include:
Drawing a person map on its own
Comparing two person maps in a single figure
Drawing a Wright Map with the item side on the left and the person side on the right
The personHist
style, the default, draws the person distribution as a histogram. The personDens
style draws a density plot.
The person.points
, person.range
, p.point.col
, and p.range.col
parameters can highlight specific values or ranges, either when called directly or via ppPlot
.
Rebecca Freund and David Torres Irribarra
item.side
personData
wrightMap
ppPlot
# Creating a Wright Map with item side on the left multi.proficiency <- data.frame( d1 = rnorm(1000, mean = -0.5, sd = 1), d2 = rnorm(1000, mean = 0.0, sd = 1), d3 = rnorm(1000, mean = +0.5, sd = 1)) items.loc <- sort( rnorm( 20)) thresholds <- data.frame( l1 = items.loc - 0.5 , l2 = items.loc - 0.25, l3 = items.loc + 0.25, l4 = items.loc + 0.5) # split.screen: Set up a split screen with the left side 80 percent of the screen # yRange = c(-3,4): Set the yRange to be the same for both sides # axis.logits.side = "L": Move the item logit axis to the left # oma = c(0,0,0,2): Adjust the spacing between the graphs # mtext("Wright Map", side = 3, font = 2, line = 1): add a title # screen(2): Start drawing on the second screen split.screen(figs = matrix(c(0,.8,0,1,.8,1,0,1),ncol = 4, byrow = TRUE)) itemModern(thresholds, yRange = c(-3,4), show.axis.logits = "L", oma = c(0,0,0,2)) mtext("Wright Map", side = 3, font = 2, line = 1) screen(2) personHist(multi.proficiency, axis.persons = "", yRange = c(-3,4) , axis.logits = "Persons", show.axis.logits = FALSE) ## Creating a multidimensional Wright Map with each dimension separate ## Mock results d1 = rnorm(1000, mean = -0.5, sd = 1) d2 = rnorm(1000, mean = 0.0, sd = 1) dim1.diff <- rnorm(5) dim2.diff <- rnorm(5) split.screen(figs = matrix(c(0,.1,0,1, .12,.6,0,1, .5,.6,0,1, .5,1,0,1) ,ncol = 4,byrow = TRUE)) personDens(d1, yRange = c(-3,3), show.axis.logits = FALSE, axis.logits = "") screen(2) itemModern(dim1.diff, yRange = c(-3,3), show.axis.logits = FALSE) mtext("Wright Map", side = 3, font = 2, line = 1) screen(3) personDens(d2, yRange = c(-3,3), show.axis.logits = FALSE , axis.logits = "", axis.persons = "", dim.names = "Dim2") screen(4) itemModern(dim2.diff, yRange = c(-3,3), show.axis.logits = FALSE , label.items = paste("Item", 6:10))
# Creating a Wright Map with item side on the left multi.proficiency <- data.frame( d1 = rnorm(1000, mean = -0.5, sd = 1), d2 = rnorm(1000, mean = 0.0, sd = 1), d3 = rnorm(1000, mean = +0.5, sd = 1)) items.loc <- sort( rnorm( 20)) thresholds <- data.frame( l1 = items.loc - 0.5 , l2 = items.loc - 0.25, l3 = items.loc + 0.25, l4 = items.loc + 0.5) # split.screen: Set up a split screen with the left side 80 percent of the screen # yRange = c(-3,4): Set the yRange to be the same for both sides # axis.logits.side = "L": Move the item logit axis to the left # oma = c(0,0,0,2): Adjust the spacing between the graphs # mtext("Wright Map", side = 3, font = 2, line = 1): add a title # screen(2): Start drawing on the second screen split.screen(figs = matrix(c(0,.8,0,1,.8,1,0,1),ncol = 4, byrow = TRUE)) itemModern(thresholds, yRange = c(-3,4), show.axis.logits = "L", oma = c(0,0,0,2)) mtext("Wright Map", side = 3, font = 2, line = 1) screen(2) personHist(multi.proficiency, axis.persons = "", yRange = c(-3,4) , axis.logits = "Persons", show.axis.logits = FALSE) ## Creating a multidimensional Wright Map with each dimension separate ## Mock results d1 = rnorm(1000, mean = -0.5, sd = 1) d2 = rnorm(1000, mean = 0.0, sd = 1) dim1.diff <- rnorm(5) dim2.diff <- rnorm(5) split.screen(figs = matrix(c(0,.1,0,1, .12,.6,0,1, .5,.6,0,1, .5,1,0,1) ,ncol = 4,byrow = TRUE)) personDens(d1, yRange = c(-3,3), show.axis.logits = FALSE, axis.logits = "") screen(2) itemModern(dim1.diff, yRange = c(-3,3), show.axis.logits = FALSE) mtext("Wright Map", side = 3, font = 2, line = 1) screen(3) personDens(d2, yRange = c(-3,3), show.axis.logits = FALSE , axis.logits = "", axis.persons = "", dim.names = "Dim2") screen(4) itemModern(dim2.diff, yRange = c(-3,3), show.axis.logits = FALSE , label.items = paste("Item", 6:10))
The plotCI
function is intended for graphing confidence intervals. The difplot
function is a wrapper for plotCI
specifcally intended for examining Differential Item Functioning from ConQuest output.
plotCI(ests, errors, labels = "", zeroline = TRUE, incol = "gray", outcol = "blue" , main.title = "Statistical Significance Plot", axes = FALSE, xlab = "", pch = 16, ...) ## Default S3 method: difplot(data, grouptype = NULL, group = NULL, item.names = NULL , ylim = c(-1, 1), ylab = NULL, ...) ## S3 method for class 'CQmodel' difplot(data, table.name = NULL, grouptype = NULL , group = NULL, ...) ## S3 method for class 'character' difplot(data, equation, ...)
plotCI(ests, errors, labels = "", zeroline = TRUE, incol = "gray", outcol = "blue" , main.title = "Statistical Significance Plot", axes = FALSE, xlab = "", pch = 16, ...) ## Default S3 method: difplot(data, grouptype = NULL, group = NULL, item.names = NULL , ylim = c(-1, 1), ylab = NULL, ...) ## S3 method for class 'CQmodel' difplot(data, table.name = NULL, grouptype = NULL , group = NULL, ...) ## S3 method for class 'character' difplot(data, equation, ...)
plotCI
parameters:
ests |
vector of point estimates. |
errors |
vector of standard errors. |
labels |
vector of labels for the items. |
zeroline |
logical indicating whether to draw a line at zero. |
incol |
color of intervals containing zero. |
outcol |
color of intervals not containing zero. |
main.title |
title of the plot. |
axes , xlab , pch
|
parameters passed to |
difplot
parameters:
data |
A |
table.name |
The RMP table to use for parameters. Should be an interactions table. |
grouptype |
The name of the demographic variable (e.g. “gender”). |
group |
The name of the group to test for DIF (e.g. “male”). |
item.names |
vector of item names. |
equation |
string specifying the model equation, if the Summary of Estimation table was not included in the show file. |
ylim , ylab
|
more parameters passed to |
... |
additional parameters to pass to |
The plotCI
function takes point estimates and standard errors as inputs and plots 95 percent confidence intervals in relation to a zero-line. By default, it colors the intervals gray if they include zero, and blue if they do not. The difplot
function is a wrapper for plotCI
specifcally intended for examining Differential Item Functioning from ConQuest output and expects tables formatted exactly like ConQuest output to work correctly. For plotting DIF from other statistical packages, it is recommended to use plotCI
directly.
David Torres Irribarra and Rebecca Freund
#Plotting confidence intervals ests <- rnorm(10,sd = .5) errors <- runif(10,min = .1,max = .5) plotCI(ests,errors,ylim = c(-3,3)) #DIF plot: fpath <- system.file("extdata", package="WrightMap") # equation must be specified because there is no summary of estimation # table in this example difplot(file.path(fpath,"ex6a.shw"), equation = "item-gender+item*gender")
#Plotting confidence intervals ests <- rnorm(10,sd = .5) errors <- runif(10,min = .1,max = .5) plotCI(ests,errors,ylim = c(-3,3)) #DIF plot: fpath <- system.file("extdata", package="WrightMap") # equation must be specified because there is no summary of estimation # table in this example difplot(file.path(fpath,"ex6a.shw"), equation = "item-gender+item*gender")
Plots a Wright Map for a single person (similar to a kidmap). On the person side, highlights their estimated ability and a range of one standard error. On the item side, draws lines representing item difficulties at which they are expected to have a 20%, 40%, 50%, 60%, and 80% chance of success.
ppPlot(thetas, thresholds, est, SE, main.title = "Person Probability Plot" , cut.left = 0, cut.right = .94, cut.lab.adj = c(1,.5),...) cutLines(cutpoints = NULL,cut.left = 0, cut.right = 1, cut.lab.text = NULL , cut.lab.adj = c(0,1),...)
ppPlot(thetas, thresholds, est, SE, main.title = "Person Probability Plot" , cut.left = 0, cut.right = .94, cut.lab.adj = c(1,.5),...) cutLines(cutpoints = NULL,cut.left = 0, cut.right = 1, cut.lab.text = NULL , cut.lab.adj = c(0,1),...)
thetas |
a vector, matrix or data frame of person parameter estimates. Can also be a character string specifying a ConQuest output file of person parameter estimates, or a CQmodel object. Will be sent to the function |
thresholds |
matrix or data frame of item parameter estimates. Can also be a character string specifying a ConQuest show file. Will be sent to the function |
est |
estimated ability of the person |
SE |
standard error of the estimate |
main.title |
title of the Person Probability Plot. |
cut.left |
value between 0 and 1 describing where to place the lefthand side of the cutpoints, as a fraction of the item plot. |
cut.right |
value between 0 and 1 describing where to place the righthand side of the cutpoints, as a fraction of the item plot. |
cut.lab.adj |
similar to the |
cutpoints |
argument to |
cut.lab.text |
argument to |
... |
additional arguments to pass to |
The ppPlot
function is a wrapper for wrightMap
that is specifically designed for person probability plots, and as such has access to all the parameters of wrightMap and its associated functions. It uses the person.points
, person.range
, p.point.col
, and p.range.col
parameters on the person.side
function to draw a range of one standard error around the estimated ability level. On the item side, it calculates at what item difficulty the respondent is expected to have a 20%, 40%, 50%, 60%, and 80% chance of success and then uses the cutLines
function to illustrate these cutpoints. The cutLines function should not be called on its own and may be hidden in future versions. It is included here to show the available parameters, which can be included in a call to wrightMap
or any of the item.side
functions.
David Torres Irribarra and Rebecca Freund
fpath <- system.file("extdata", package="WrightMap") model1 <- CQmodel(p.est = file.path(fpath,"ex2.eap"), show = file.path(fpath,"ex2.shw")) #Person histogram, modern item ppPlot(model1,est = 0, SE = 1) #Person density, classic item ppPlot(model1,est = 0, SE = 1, person.side = personDens,item.side = itemClassic)
fpath <- system.file("extdata", package="WrightMap") model1 <- CQmodel(p.est = file.path(fpath,"ex2.eap"), show = file.path(fpath,"ex2.shw")) #Person histogram, modern item ppPlot(model1,est = 0, SE = 1) #Person density, classic item ppPlot(model1,est = 0, SE = 1, person.side = personDens,item.side = itemClassic)
Simulate polytomous item responses based on item difficulty thresholds (delta
) and person abilities (theta
) for the Partial Credit Model (PCM) and the Rasch Model as a special case. The function allows items to have varying numbers of levels, making it useful for generating data in contexts such as item response theory (IRT) models for polytomous items (e.g., Likert scales).
sim.PCM(pN, iN, lN, itemLevels = NULL, delta = NULL, delta.l = NULL, theta = NULL)
sim.PCM(pN, iN, lN, itemLevels = NULL, delta = NULL, delta.l = NULL, theta = NULL)
pN |
|
iN |
|
lN |
|
itemLevels |
|
delta |
|
delta.l |
|
theta |
|
This function generates polytomous item responses using a logistic IRT model. It first creates or uses given person abilities (theta
) and item thresholds (delta
). Responses are simulated by computing the probability of a person responding in each category of an item based on their ability and the item's threshold. The function allows for items to have different numbers of response categories through the itemLevels
argument.
A list with the following components:
pN |
The number of people (respondents). |
iN |
The number of items. |
lN |
The default number of levels (categories) for the polytomous items. |
itemLevels |
A vector specifying the number of levels for each item. |
M |
A list of |
CM |
A list of |
U |
A |
theta |
A numeric vector of person abilities. |
delta.l |
(Optional) A vector of common level thresholds if it was generated internally. |
delta.il |
(Optional) A matrix of item-specific deviations for thresholds if |
delta |
A matrix of item thresholds. |
resp |
A |
David Torres Irribarra
# Simulate 100 respondents, 5 items, and 3 levels (e.g., Likert scale with 3 options) simulated_data <- sim.PCM(pN = 100, iN = 5, lN = 3) # Simulate with custom item thresholds custom_delta <- matrix(c(-0.5, -1, -2, 1, 0.5, 1), nrow = 3) simulated_data_custom <- sim.PCM(pN = 50, iN = 3, lN = 3, delta = custom_delta) # Simulate with custom person abilities custom_theta <- rnorm(100, mean = 0, sd = 1.5) simulated_data_theta <- sim.PCM(pN = 100, iN = 5, lN = 3, theta = custom_theta) # Rasch model simulation (dichotomous items) # 50 persons with abilities ranging from -3 to 3 rasch_theta <- seq(-3, 3, length.out = 50) rasch_delta <- matrix(c(0,1.5,0,-1,0,0.5,0,-0.5,0,1,0,-1.5,0,2,0,-2,0,0.8,0,-0.8) , ncol = 2, byrow = TRUE) simulated_rasch <- sim.PCM(pN = 50, iN = 10, lN = 2, delta = rasch_delta, theta = rasch_theta) # Simulation with items having different numbers of levels # 4 items with 5 levels, 3 items with dichotomous responses, and 3 items with 3 levels # Simulate with a total of 10 items and varying levels simulated_mixed_levels <- sim.PCM(pN = 50, iN = 10, lN = 5, itemLevels = c(5, 5, 5, 5, 2, 2, 2, 3, 3, 3))
# Simulate 100 respondents, 5 items, and 3 levels (e.g., Likert scale with 3 options) simulated_data <- sim.PCM(pN = 100, iN = 5, lN = 3) # Simulate with custom item thresholds custom_delta <- matrix(c(-0.5, -1, -2, 1, 0.5, 1), nrow = 3) simulated_data_custom <- sim.PCM(pN = 50, iN = 3, lN = 3, delta = custom_delta) # Simulate with custom person abilities custom_theta <- rnorm(100, mean = 0, sd = 1.5) simulated_data_theta <- sim.PCM(pN = 100, iN = 5, lN = 3, theta = custom_theta) # Rasch model simulation (dichotomous items) # 50 persons with abilities ranging from -3 to 3 rasch_theta <- seq(-3, 3, length.out = 50) rasch_delta <- matrix(c(0,1.5,0,-1,0,0.5,0,-0.5,0,1,0,-1.5,0,2,0,-2,0,0.8,0,-0.8) , ncol = 2, byrow = TRUE) simulated_rasch <- sim.PCM(pN = 50, iN = 10, lN = 2, delta = rasch_delta, theta = rasch_theta) # Simulation with items having different numbers of levels # 4 items with 5 levels, 3 items with dichotomous responses, and 3 items with 3 levels # Simulate with a total of 10 items and varying levels simulated_mixed_levels <- sim.PCM(pN = 50, iN = 10, lN = 5, itemLevels = c(5, 5, 5, 5, 2, 2, 2, 3, 3, 3))
This function allows the easy generation of ‘Wright Maps’ (named after Ben Wright), also known as item-person maps. They are used to to display unidimensional and multidimensional assessment results. These maps represent simultaneously the proficiency distribution of respondents and the item difficulty parameters as estimated by a model of the Rasch family.
wrightMap(thetas, thresholds = NULL, item.side = itemModern, person.side = personHist , main.title = "Wright Map", min.logit.pad = 0.25, max.logit.pad = 0.25, min.l = NULL , max.l = NULL, item.prop = 0.8, return.thresholds = TRUE, new.quartz = FALSE , use.hist = NULL,...) ## S3 method for class 'CQmodel' plot(x, ...)
wrightMap(thetas, thresholds = NULL, item.side = itemModern, person.side = personHist , main.title = "Wright Map", min.logit.pad = 0.25, max.logit.pad = 0.25, min.l = NULL , max.l = NULL, item.prop = 0.8, return.thresholds = TRUE, new.quartz = FALSE , use.hist = NULL,...) ## S3 method for class 'CQmodel' plot(x, ...)
The parameters documented here do not include many of the options included in the Wright Map family of functions. For graphical parameters, see item.side
and person.side
. For data handling, see item.person.data
and CQmodel
.
wrightMap parameters:
thetas |
a vector, matrix or data frame of person parameter estimates. Can also be a character string specifying a ConQuest output file of person parameter estimates, or a CQmodel object. Will be sent to the function |
thresholds |
matrix or data frame of item parameter estimates. Can also be a character string specifying a ConQuest show file. Will be sent to the function |
item.side |
function to use to draw the item side of the map. Currently included options are itemModern (default), itemClassic (for ConQuest-style Wright Maps) and itemHist. See |
person.side |
function to use to draw the person side of the map. Currently included options are personHist (default), to draw the person distribution as a histogram, and personDens, which draws a density plot. See |
main.title |
title of the Wright Map. |
min.logit.pad |
numeric value indicating how much of the lower end of the logit scale should be included in the plot. |
max.logit.pad |
numeric value indicating how much of the upper end of the logit scale should be included in the plot. |
min.l |
numeric value for fixing the lower end of the logit scale. It overrides the automatic detection of the range and the |
max.l |
numeric value for fixing the upper end of the logit scale. It overrides the automatic detection of the range and the |
item.prop |
numeric value greater than 0 and smaller than 1 indicating the proportion of the plot to be allocated to the item part of the Wright Map. |
return.thresholds |
logical. Determines whether the to return or not the numeric values used to position the parameters on the item side of the Wright Map. Enabled by default. |
new.quartz |
logical. Determines whether the wrightMap will be created on a new graphical device or if it will reuse one already open. By default is set to |
use.hist |
deprecated. Use the |
... |
Additional arguments to pass to |
wrightMap can also be called by passing a CQmodel object to plot:
x |
CQmodel object to pass to plot |
David Torres Irribarra and Rebecca Freund
Wilson, M. (2005). Constructing measures: An item response modeling approach. Wright, B. D., & Stone, M. H. (1979). Best test design. Chicago: Mesa Press.
person.side
item.side
personData
itemData
# Plotting results of a unidimensional Rasch Model ## Mock results uni.proficiency <- rnorm(1000, mean = -0.5, sd = 1) difficulties <- sort( rnorm( 20)) ## Default map wrightMap( uni.proficiency, difficulties) ## Density version wrightMap( uni.proficiency, difficulties, person.side = personDens) # Plotting results of a multidimensional Rasch Model ## Mock results multi.proficiency <- data.frame( d1 = rnorm(1000, mean = -0.5, sd = 1), d2 = rnorm(1000, mean = 0.0, sd = 1), d3 = rnorm(1000, mean = +0.5, sd = 1)) difficulties <- sort( rnorm( 20)) dev.new(width=10, height=10) wrightMap( multi.proficiency, difficulties) # Plotting results of a unidimensional Rating Scale Model ## Mock results uni.proficiency <- rnorm(1000, mean = -0.5, sd = 1) items.loc <- sort( rnorm( 20)) thresholds <- data.frame( l1 = items.loc - 0.5 , l2 = items.loc - 0.25, l3 = items.loc + 0.25, l4 = items.loc + 0.5) wrightMap( uni.proficiency, thresholds) ####ConQuest integration### fpath <- system.file("extdata", package="WrightMap") #Partial credit model: model1 <- CQmodel(p.est = file.path(fpath,"ex2.eap"), show = file.path(fpath,"ex2.shw")) wrightMap(model1) # Rating scale model: model2 <- CQmodel(file.path(fpath,"ex2b.eap"), file.path(fpath,"ex2b-2.shw")) wrightMap(model2, label.items.row = 2) # Complex model model3 <- CQmodel(file.path(fpath,"ex4a.mle"), file.path(fpath,"ex4a.shw")) wrightMap(model3, min.logit.pad = -29, person.side = personDens) ### Skip CQmodel wrightMap(file.path(fpath,"ex2a.eap"), file.path(fpath,"ex2a.shw"), label.items.row = 3)
# Plotting results of a unidimensional Rasch Model ## Mock results uni.proficiency <- rnorm(1000, mean = -0.5, sd = 1) difficulties <- sort( rnorm( 20)) ## Default map wrightMap( uni.proficiency, difficulties) ## Density version wrightMap( uni.proficiency, difficulties, person.side = personDens) # Plotting results of a multidimensional Rasch Model ## Mock results multi.proficiency <- data.frame( d1 = rnorm(1000, mean = -0.5, sd = 1), d2 = rnorm(1000, mean = 0.0, sd = 1), d3 = rnorm(1000, mean = +0.5, sd = 1)) difficulties <- sort( rnorm( 20)) dev.new(width=10, height=10) wrightMap( multi.proficiency, difficulties) # Plotting results of a unidimensional Rating Scale Model ## Mock results uni.proficiency <- rnorm(1000, mean = -0.5, sd = 1) items.loc <- sort( rnorm( 20)) thresholds <- data.frame( l1 = items.loc - 0.5 , l2 = items.loc - 0.25, l3 = items.loc + 0.25, l4 = items.loc + 0.5) wrightMap( uni.proficiency, thresholds) ####ConQuest integration### fpath <- system.file("extdata", package="WrightMap") #Partial credit model: model1 <- CQmodel(p.est = file.path(fpath,"ex2.eap"), show = file.path(fpath,"ex2.shw")) wrightMap(model1) # Rating scale model: model2 <- CQmodel(file.path(fpath,"ex2b.eap"), file.path(fpath,"ex2b-2.shw")) wrightMap(model2, label.items.row = 2) # Complex model model3 <- CQmodel(file.path(fpath,"ex4a.mle"), file.path(fpath,"ex4a.shw")) wrightMap(model3, min.logit.pad = -29, person.side = personDens) ### Skip CQmodel wrightMap(file.path(fpath,"ex2a.eap"), file.path(fpath,"ex2a.shw"), label.items.row = 3)
This package allows the easy generation of ‘Wright Maps’ (named after Ben Wright), also known as item-person maps to display unidimensional and multidimensional assessment results. These maps represent simultaneously the proficiency distribution of respondents and the item difficulty parameters as estimated by a model of the Rasch Family. The package contains several other functions for graphing common IRT statistics.
Additionally, the package contains the CQmodel
function, which reads output files created using ConQuest software and creates a set of data frames for easy data manipulation, bundled in a CQmodel object. The wrightMap function can take a CQmodel object as input or it can be used to create Wright Maps directly from data frames of person and item parameters.
Package: | WrightMap |
Type: | Package |
Version: | 1.0 |
Date: | 2014-03-02 |
License: | BSD_3_clause | LICENSE |
The wrightMap function relies on two main inputs: (a) thetas
: a vector or matrix of respondent proficiences, and (b) thresholds
: a vector or matrix of item thresholds. In the simplest case, say for a unidimensional Rasch model, thetas
can be a vector of person proficiencies and thresholds
a vector of item difficulties.
To plot multiple dimensions of person proficiency, simply provide them as a matrix were the results for each dimension is stored in a different column, such that for a 3-dimensional model with 1,000 persons, theta
is a matrix of 1000 rows and 3 columns.
To plot polytomous items, the thresholds for each level must be passed to the functions through the thresholds
matrix, where each row represents an item and each column represents a level. For instance, if the results of a Rating Scale model with 5 response categories and 10 items is being plotted, the thresholds
matrix will have 10 rows and 4 columns ( column one represents the thresholds between the 1 and 2 response category, column 2 the threshold between categories 2 and 3, etc.).
Alternatively, wrightMap can read directly the .shw
and .eap/.mle/.wle
output files from a Conquest analysis, and will automatically generate the thetas
and thresholds
matrices.
David Torres Irribarra and Rebecca Freund
Maintainer: David Torres Irribarra <[email protected]> and Rebecca Freund <[email protected]>
Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43(4), 561–573. Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47(2), 149–174. Wilson, M. (2005). Constructing measures: An item response modeling approach. Wright, B. D., & Stone, M. H. (1979). Best test design. Chicago: Mesa Press.
# Plotting results of a unidimensional Rasch Model ## Mock results uni.proficiency <- rnorm(1000, mean = -0.5, sd = 1) difficulties <- sort( rnorm( 20)) ## Default map wrightMap( uni.proficiency, difficulties) ## Density version wrightMap( uni.proficiency, difficulties, person.side = personDens) # Plotting results of a multidimensional Rasch Model ## Mock results multi.proficiency <- data.frame( d1 = rnorm(1000, mean = -0.5, sd = 1), d2 = rnorm(1000, mean = 0.0, sd = 1), d3 = rnorm(1000, mean = +0.5, sd = 1)) difficulties <- sort( rnorm( 20)) dev.new(width=10, height=10) wrightMap( multi.proficiency, difficulties) # Plotting results of a unidimensional Rating Scale Model ## Mock results uni.proficiency <- rnorm(1000, mean = -0.5, sd = 1) items.loc <- sort( rnorm( 20)) thresholds <- data.frame( l1 = items.loc - 0.5, l2 = items.loc - 0.25, l3 = items.loc + 0.25, l4 = items.loc + 0.5) dev.new(width=10, height=10) wrightMap( uni.proficiency, thresholds) ## Setting up labels, colors and symbols thresholds.labels <- data.frame( l1 = paste('Lev',rep(1,20),sep = ''), l2 = paste('Lev',rep(2,20),sep = ''), l3 = paste('Lev',rep(3,20),sep = ''), l4 = paste('Lev',rep(4,20),sep = '')) thresholds.colors <- data.frame( l1 = rep( 'green',20), l2 = rep( 'red',20), l3 = rep( 'yellow',20), l4 = rep( 'blue',20)) thresholds.symbols <- data.frame( l1 = rep( 15,20), l2 = rep( 16,20), l3 = rep( 17,20), l4 = rep( 18,20)) dev.new(width=10, height=10) wrightMap( uni.proficiency, thresholds , thr.lab.text = thresholds.labels , thr.lab.col = as.vector(as.matrix(thresholds.colors)) , thr.sym.pch = thresholds.symbols )
# Plotting results of a unidimensional Rasch Model ## Mock results uni.proficiency <- rnorm(1000, mean = -0.5, sd = 1) difficulties <- sort( rnorm( 20)) ## Default map wrightMap( uni.proficiency, difficulties) ## Density version wrightMap( uni.proficiency, difficulties, person.side = personDens) # Plotting results of a multidimensional Rasch Model ## Mock results multi.proficiency <- data.frame( d1 = rnorm(1000, mean = -0.5, sd = 1), d2 = rnorm(1000, mean = 0.0, sd = 1), d3 = rnorm(1000, mean = +0.5, sd = 1)) difficulties <- sort( rnorm( 20)) dev.new(width=10, height=10) wrightMap( multi.proficiency, difficulties) # Plotting results of a unidimensional Rating Scale Model ## Mock results uni.proficiency <- rnorm(1000, mean = -0.5, sd = 1) items.loc <- sort( rnorm( 20)) thresholds <- data.frame( l1 = items.loc - 0.5, l2 = items.loc - 0.25, l3 = items.loc + 0.25, l4 = items.loc + 0.5) dev.new(width=10, height=10) wrightMap( uni.proficiency, thresholds) ## Setting up labels, colors and symbols thresholds.labels <- data.frame( l1 = paste('Lev',rep(1,20),sep = ''), l2 = paste('Lev',rep(2,20),sep = ''), l3 = paste('Lev',rep(3,20),sep = ''), l4 = paste('Lev',rep(4,20),sep = '')) thresholds.colors <- data.frame( l1 = rep( 'green',20), l2 = rep( 'red',20), l3 = rep( 'yellow',20), l4 = rep( 'blue',20)) thresholds.symbols <- data.frame( l1 = rep( 15,20), l2 = rep( 16,20), l3 = rep( 17,20), l4 = rep( 18,20)) dev.new(width=10, height=10) wrightMap( uni.proficiency, thresholds , thr.lab.text = thresholds.labels , thr.lab.col = as.vector(as.matrix(thresholds.colors)) , thr.sym.pch = thresholds.symbols )